GY7601/GY7602/GY7604/GY7608 **RS232-I2C Adapter** 产品使用说明书

产品型号: GY760X RS232-I2C Adapter

手册版本: V1.02

目 录

目 录	2
1.1 性能与技术指标	3
1.2 典型应用	3
1.3 通信协议转换	3
1.4 产品销售清单	3
1.5 技术支持与服务	3
1.6 I2C 适配器产品定购信息	4
二、外形与接口描述	5
2.1 产品外形结构	5
2.2 RS232 引脚定义 DB9	5
2.2 GY7601 端子引脚定义	5
2.3 GY7602/GY7604 排线引脚定义	6
2.4 GY7608 排线信号定义	6
三、电气特性	8
四、串口波特率设置(J3, J4)	8
五、软件操作指令及举例	9
5.1 Easy I2C与 Timing I2C	9
5.1.1 Esay I2C 模式	9
5.1.2 Timing I2C 模式	9
5.2 串口命令详解	10
5.2.1 选择 I2C 当前通道号	10
5.2.2 获取 I2C 当前通道号	10
5. 2. 3 设置当前 I2C 通道的 I2C 速率	
5. 2. 4 获取当前 I2C 通道的 I2C 速率	10
5.2.5 Easy I2C 写操作	11
5.2.6 Easy I2C 读操作	11
5.3 常见问题现象	11
六、利用 VCI_GYI2C 库函数二次开发	12
七、应用系统示意图	12

一、产品简介

1.1 性能与技术指标

- 1) RS232 串口转 I2C 总线接口,支持 1~8 路独立 I2C 接口输出。
- 2)标准的 I2C 主机接口, Master 方式, 兼容 SMbus 协议;
- 3) 串口 TXD 和 RXD 信号为 RS232 电平, DB9 接口, 可与 PC 串口相连。
- 4) 电源输入: +5V
- 5) I2C 接口信号:SCLx,SDAx,GND
- 6) 输出信号 3.3V TTL, 输入 5VTTL 可承受。
- 7) 串口速率硬件设置,支持9600、119200、57600、115200bps
- 8) I2C 总线速率软件设置, 支持 1k-800khz。
- 9) 支持一体化傻瓜式读写模式(Easy I2C),以及分步 I2C 时序控制读写模式(Timing I2C)。
- 10) 支持通过串口软件指令控制 I2C 接口的读写操作,进行二次开发。
- 11) 支持通过调用 VCI_GYI2C 的 DLL 库函数,进行二次开发。

1.2 典型应用

为电脑或主控板增加 I2C 总线接口;

通过 RS232 串口进行 I2C 接口测试;

I2C 接口的元器件寄存器读写;

I2C 接口的 EEPROM 读写;

适用于PC以及嵌入式系统的串口转I2C需求;

1.3 通信协议转换

RS232 串口与 I2C 总线接口转换。

1.4 产品销售清单

RS232-I2C 转换器一只; 直连串口线一根;

光盘1张(包括用户手册,相关资料等);

1.5 技术支持与服务

货到10日内,用户不满意,无条件退货。一年内免费维修更换。

Mail: support315@glinker.cn

网址: www.glinker.cn

1.6 I2C 适配器产品定购信息

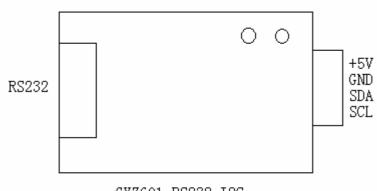
型号	名称	I2C 通道数	I2CTools 软件	VCI_GYI2C
				库文件
GY7501	USB-I2C Adapter	1	支持	支持
GY7512	USB-I2C Adapter	2	支持	支持
GY7505	UART-I2C Module	1	支持	支持
GY7506	RS232-I2C Module	1	支持	支持
GY7601	RS232-I2C Adapter	1	支持	支持
GY7602	RS232-I2C Adapter	2	支持	支持
G Y7604	RS232-I2C Adapter	4	支持	支持
GY7608	RS232-I2C Adapter	8	支持	支持
GY7616	RS232-I2C Adapter	16	支持	支持

二、外形与接口描述

2.1 产品外形结构

图 1 GY7601 RS232-I2C 适配器外观图

图 2 GY7602/7604 RS232-I2C 适配器外观图


外形尺寸: 70×45mm

2.2 RS232 引脚定义 DB9

RS232 接口是一个 DB9 的母头(Female)

DB9 引脚序号(孔)	信号定义	描述
2	TXD	RS232 电平,适配器串口发送
3	RXD	RS232 电平,适配器串口接收
5	GND	信号地
1, 4, 6, 7, 8, 9	NULL	空

2.2 GY7601 端子引脚定义

GY7601 RS232-I2C

GY7601 的电源与信号接口是一个 4 芯的接线柱端子。

引脚之间的间距为 5.08mm (200mil)

DB9 引脚序号(孔)	信号定义	描述
1	+5V	转换器电源输入
2	GND	电源地/信号地
3	SDA	I2C 接口的数据信号
4	SCL	I2C 接口的时钟信号

2.3 GY7602/GY7604 排线引脚定义

GY7602/GY7604 的电源与信号接口是一个 10 芯(5*2)的排线。

排线接口上有箭头标识的是1脚。

引脚之间的间距为 2.54mm (100mil)

引脚序号	信号定义	描述
1	+5V	电源输入
2	GND	电源地/信号地
3	SDA0	I2C-0 数据信号(第 0 通道)
4	SCL0	I2C-0 时钟信号(第 0 通道)
5	SDA1	I2C-1 数据信号(第 1 通道)
6	SCL1	I2C-1 时钟信号(第 1 通道)
7	SDA2	I2C-2 数据信号(第 2 通道)
8	SCL2	I2C-2 时钟信号(第 2 通道)
9	SDA3	I2C-3 数据信号(第 3 通道)
10	SCL4	I2C-4 时钟信号(第 3 通道)

2.4 GY7608 排线信号定义

GY7608 直接输出 2 组 10 芯的排线 (5*2), 分别为 J1,J2。接口是母头, 孔。用户可自行引出需

要连接的信号。

排线接口上有箭头标识的是1脚。

引脚(孔)之间的间距为 2.54mm (100mil)。

两组排线的识别与区分:

J1 是下面的一组。

J2 是上面的一组。

J1 信号描述:

引脚序号		描述
1	+5V	电源输入
2	GND	电源/信号地
3	SDA-0	I2C-0 数据信号(第 0 通道)
4	SCL-0	I2C-0 时钟信号(第 0 通道)
5	SDA-1	I2C-1 数据信号(第 1 通道)
6	SCL-1	I2C-1 时钟信号(第 1 通道)
7	SDA-2	I2C-2 数据信号(第 2 通道)
8	SCL-2	I2C-2 时钟信号(第 2 通道)
9	SDA-3	I2C-3 数据信号(第 3 通道)
10	SCL-3	I2C-3 时钟信号(第 3 通道)

J2 信号描述:

引脚序号		描述
1	+5V	电源输入
2	GND	电源/信号地
3	SDA-4	I2C-0 数据信号(第 4 通道)
4	SCL-4	I2C-0 时钟信号(第 4 通道)
5	SDA-5	I2C-1 数据信号(第 5 通道)
6	SCL-5	I2C-1 时钟信号(第 5 通道)
7	SDA-6	I2C-2 数据信号(第 6 通道)
8	SCL-6	I2C-2 时钟信号(第 6 通道)
9	SDA-7	I2C-3 数据信号(第 7 通道)
10	SCL-7	I2C-3 时钟信号(第 7 通道)

三、电气特性

	Min	Normal	Max	备注
VDD	4.5V	5V	5.5V	电源输入
VOH	3.0V	3.25V	3.35V	输出时, 高电平
VOH	3.0 V	3.23 V	3.33 V	3.3V)
VOL			0.4V	
VIH	2.07/		537	输入时,5V 可承
VIH	2.0V		5V	受
VIL			0.8V	

所有 I2C 信号内部均已上拉到 3.3V,上拉电阻 2.7K。

四、串口波特率设置(J3,J4)

COMSET1	COMSET0	I2C 速率	
0	0	9600	
0	1	19200	
1	0	57600	
1	1	115200	
备注: 引脚悬空为高电平,1状态			

出厂默认波特率是 115200bps,

如用户需要更改串口速率,请将外壳打开,找到J3,J4,用短路环设置即可。

五、软件操作指令及举例

建议用户编程时采用 VCI_GYI2C 的库函数来编写自己的界面应用程序,会更加简便。

当然通过如下串口指令也可以, 步骤较多, 稍显繁琐。

对模块的参数设置以及读写 I2C 从设备,均通过输入串口命令数据来进行。(电脑上可用串口调试助手等串口软件测试,8 个数据位,1 个停止位,无奇偶校验,串口波特率选被设置的值,如果 COMSET0,COMSET1 引脚悬空,则是 115200bps)

I2C 转换器上电后的默认参数:

工作模式: EasyI2C 模式

I2C 通道号: 0 号通道

I2C 时钟频率: 200khz

5.1 Easy I2C 与 Timing I2C

所有 GY7XXX 系列的 I2C 转换器/模块支持两种读写操作模式。

5.1.1 Esay I2C 模式

可直接通过命令或函数读写数据,无须考虑去产生 I2C 的时序。

工作过程:转换器/模块得到该命令以后,进行解析,然后启动内部的 I2C 读写控制时序,将上位机要求的操作完成以后,再将结果返回给上位机

优点:该方式简单方便,快速,推荐使用。用户不需要了解 I2C 时序协议。

I2C 时钟频率从 1k-800khz 可设置。

局限性:受内部缓冲区的限制,一次命令最多读出来的数据为 512 个,一次最多写入的数据为 520 个(包含命令字)。

5.1.2 Timing I2C 模式

I2C 时序由上位机软件或命令来控制,分如下 4 种命令。

- 1)产生 I2C 启动时序状态。
- 2)写入8个bit,即一个字节,之后获取并返回ACK状态
- 3)读出 8 个 bit,即一个字节,之后给出 ACK 或 NACK
- 4)产生 I2C 停止时序状态

优点:用户通过上位机软件自行控制 I2C 的时序,时序完全透明开放。可读写的长度不受限制,由用户控制。

局限性:步骤繁琐,用户需要熟悉 I2C 时序才能使用该方式。

来回通信握手判断,对速度有影响。

I2C 时钟频率可设置的范围: 1k-235khz 可设置

5.2 串口命令详解

命令字汇总如下:

#define CMD_SET_CHANNEL 0x40 //选择当前 I2C 通道号 #define CMD_GET_CHANNEL 0x41 //查询当前 I2C 通道号 #define CMD_SET_CLKVALUE 0x42 //设置 I2C 时钟频率,单位 KHZ #define CMD_GET_CLKVALUE 0x43 //查询 I2C 时钟频率,单位 KHZ #define CMD_SEND_DATA 0x44 //EasyI2C 模式的读写 I2C 命令字

(以下命令字和数据都为16进制表示)

5.2.1 选择 I2C 当前通道号

#define CMD_SET_CHANNEL 0x40 //选择当前 I2C 通道号

(执行命令后,内部 I2C 引脚重新配置)

格式: 命令字 40 + 需要选择的 I2C 通道号

举例:

40 00 选择 0 号 I2C 通道作为当前通道

40 03 选择 3 号 I2C 通道作为当前通道

返回值: AA

默认设置:如果不进行此设置,则默认为00

5.2.2 获取 I2C 当前通道号

#define CMD_GET_CHANNEL 0x41 //查询当前 I2C 通道号

格式:命令字41

返回值: 当前工作的 I2C 通道号

举例:

41 返回值 01 当前工作的通道索引号为 01 ,即第 01 路 I2C 接口

5.2.3 设置当前 I2C 通道的 I2C 速率

#define CMD SET CLKVALUE 0x42 //设置 I2C 时钟频率,单位 KHZ

格式:命令字42 +速率的高字节+速率的低字节

举例:

42 00 64 将当前 I2C 通道的速率设置为 0x0064 即 100khz

42 01 90 将当前 I2C 通道的速率设置为 0x0190 即 400khz

返回值: AA

默认设置:如果不进行此设置,则默认为0064,即100khz

5.2.4 获取当前 I2C 通道的 I2C 速率

#define CMD_GET_CLKVALUE 0x43 //查询 I2C 时钟频率,单位 KHZ

格式:命令字43举例:

43 返回值 00 64 当前 I2C 通道的速率为 0x0064 即 100khz

43 返回值 01 90 当前 I2C 通道的速率为 0x0190 即 400khz

5.2.5 Easy I2C 写操作

#define CMD_SEND_DATA 0x44 //EasyI2C 模式的读写命令字

格式:

命令字	设备地址+R/W	ROM 地址,数据
44	7位设备地址+读写位为0	依次写入内部 ROM 或寄存器的 地址和数据

注: 一个命令帧的总长度最大为 260 个字节

举例: (slaveaddress+W =0xA0)

44 A0 00 33 44 返回值 0xAA 依次写入地址 00,数据 33,44。

44 A0 00 返回值 0xAA 只写入地址 00

返回值 0xBB 错误

5.2.6 Easy I2C 读操作

#define CMD_SEND_DATA 0x44 //EasyI2C 模式的读写命令字

格式:

命令字	设备地址+R/W	ROM 地址	长度(该命令帧的最后一
			个字节)
44	7 位设备地址+读写位为 1	一般有 1-2 个字节	希望读的个数减1

举例: (slaveaddress+R =0xA1)

44 A1 FF 直接启动读,正常会返回值 256 个数据 可读出 256 个(0xFF+1) 字节。

44 A1 00 FF 随机读(random read)

I2C 接口会先写地址 00, 然后从该地址读, 要求读数据个数 256。

正常会返回值 256 个所读到的数据。

44 A1 00 00 07 随机读 (random read)

I2C 接口先写地址 00 00, 然后从该地址读, 要求读数据个数 8,

正常会返回值8个所读到的数据。

返回值 0xBB 错误

5.3 常见问题现象

如果从串口发送指令后,无任何返回结果,请检查以下问题:

- 1) +5V 电源是否接入正确?
- 2) COMSET0,1 的设置,以及上位机的串口波特率是否设置正确? 如果这两个脚都悬空,则默认串口波特率为 115200。

3) 串口 TXD, RXD 信号连接是否正确, 有无接反?

如果返回结果或返回值有问题,则检查以下问题:

- 1) SCL, SDA 信号和从设备的连接是否正确和接触可靠?
- 2) 操作指令是否正确? 从设备的物理地址是否输入正确?
- 3) 设备地址+(R/W)时,读写是否区分正确?

举例: 7位从设备地址 1010000

读操作, 地址+R/W 字节设置成 0xA1

写操作,地址+R/W 字节设置成 0xA0

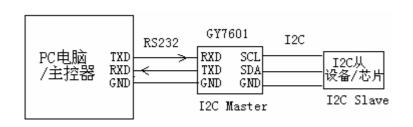
六、利用 VCI_GYI2C 库函数二次开发

用户除了本文第五节所描述的直接用串口命令方式外,还可以用 VC,VB,Delphi 等工具调用我们提供的库文件进行二次软件开发。这种直接调用接口转换函数的方式会更加方便用户的软件开发。库文件: VCI_GYI2C.DLL,VCI_GYI2C.LIB,SiUSBXp.DLL,VCI_GYI2C.H

函数详解见另外的专门文档 GYI2C Develop Manual。

七、应用系统示意图

主控制器可以是电脑或者带 RS232 串口的单片机/嵌入式系统板卡。


I2C 从设备一般是带 I2C 或 SMBUS 接口的芯片或设备。

GY7506 是单路 RS232 转 I2C 接口模块。

GY7506 因封装较小,可以作为一颗芯片焊接或安装到用户的 PCB 板上。

GY760X 是 RS232 转 1-8 路 I2C 接口板。

系统的连接请参考下图:

图 7.1 GY7506/GY7601 I2C 应用示意图

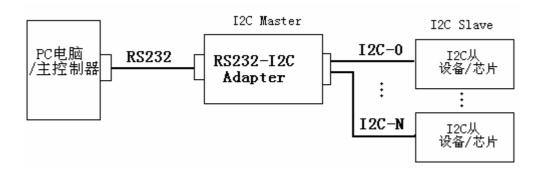


图 7.2 GY760X RS232 转 1~8 路 I2C 应用示意图

七、附录: AT24CXX 芯片参数

下面给出了24CXX系列I2C器件的主要参数,其他I2C接口器件请参考其手册。

芯片型号	Device Adress	读写 ROM 地址宽度	最大页写能力	
24c01~02	1010 A2 A1 A0 R/W	单字节地址	8 字节	
24c04	1010 A2 A1 P0 R/W	单字节地址	16 字节	
24c08	1010 A2 P1 P0 R/W	单字节地址	16 字节	
24c16	1010 P2 P1 P0 R/W	单字节地址	16 字节	
24c32~64	1010 A2 A1 A0 R/W	2字节地址	32 字节	
24c128~256	1010 A0 A1 A0 R/W	2字节地址	64 字节	
24c512	1010 A2 A1 A0 R/W	2字节地址	128 字节	
24c1024	1010 A 0 A1 P0 R/W	2字节地址	256 字节	

备注: A0-A2 是芯片引脚设置的地址, P0-P2 是内部页地址。每个设备地址只能标识 256 字节的数据空间。